Harrison Homology, Hochschild Homology and Triples*l

نویسنده

  • MICHAEL BARR
چکیده

We consider the following situation: a field k, a commutative k-algebra R and a left R-module M. Since R is commutative, M may also be considered as an R-R bimodule with the same operation on each side (such modules are often termed symmetric). With these assumptions we have the Harrison (co-) homology groups Harr,(R, M) (Harr*(R, M)), the Hochschild (co-) homology groups Hoch, (R, M) (Hoch*(R, M)) and the symmetric algebra triple (co-) homology groups Sym,(R, M) (Sym*(R, M)). (Harrison cohomology is introduced in [8], homology may be defined similarly; Hochschild cohomology is introduced in [9], a good account of the homology and cohomology is found in [IO]; general triple homology and cohomology are described in [4] and [5], and the symmetric algebra cotriple is described at the beginning of Section 3 below.) There are obvious natural transformations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Commutative Algebra Homology in Prime Characteristics

We give decompositions of the Hochschild and cyclic homology of a com-mutative algebra in characteristic p into p?1 parts, and show these decom-positions are compatible with the shuue product structures. We also give a counterexample to a conjecture attributed to Barr, which asserts that a modiied version of Harrison cohomology coincides with Andr e/Quillen cohomology.

متن کامل

Quantization on Curves

Deformation quantization on varieties with singularities offers perspectives that are not found on manifolds. The Harrison component of Hochschild cohomology, vanishing on smooth manifolds, reflects information about singularities. The Harrison 2–cochains are symmetric and are interpreted in terms of abelian ∗–products. This paper begins a study of abelian quantization on plane curves over C, b...

متن کامل

When the Theories Meet: Khovanov Homology as Hochschild Homology of Links

We show that Khovanov homology and Hochschild homology theories share common structure. In fact they overlap: Khovanov homology of a (2, n)-torus link can be interpreted as a Hochschild homology of the algebra underlining the Khovanov homology. In the classical case of Khovanov homology we prove the concrete connection. In the general case of Khovanov-Rozansky, sl(n), homology and their deforma...

متن کامل

Triply-graded link homology and Hochschild homology of Soergel bimodules

We trade matrix factorizations and Koszul complexes for Hochschild homology of Soergel bimodules to modify the construction of triplygraded link homology and relate it to Kazhdan-Lusztig theory. Hochschild homology. Let R be a k-algebra, where k is a field, R = R ⊗k R op be the enveloping algebra of R, and M be an R-bimodule (equivalently, a left R-module). The functor of R-coinvariants associa...

متن کامل

Topological Hochschild Homology of Thom Spectra and the Free Loop Space

We describe the topological Hochschild homology of ring spectra that arise as Thom spectra for loop maps f : X → BF , where BF denotes the classifying space for stable spherical fibrations. To do this, we consider symmetric monoidal models of the category of spaces over BF and corresponding strong symmetric monoidal Thom spectrum functors. Our main result identifies the topological Hochschild h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003